DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO TEST BOOKLET

SI. No: 0662

Subject Code: 03

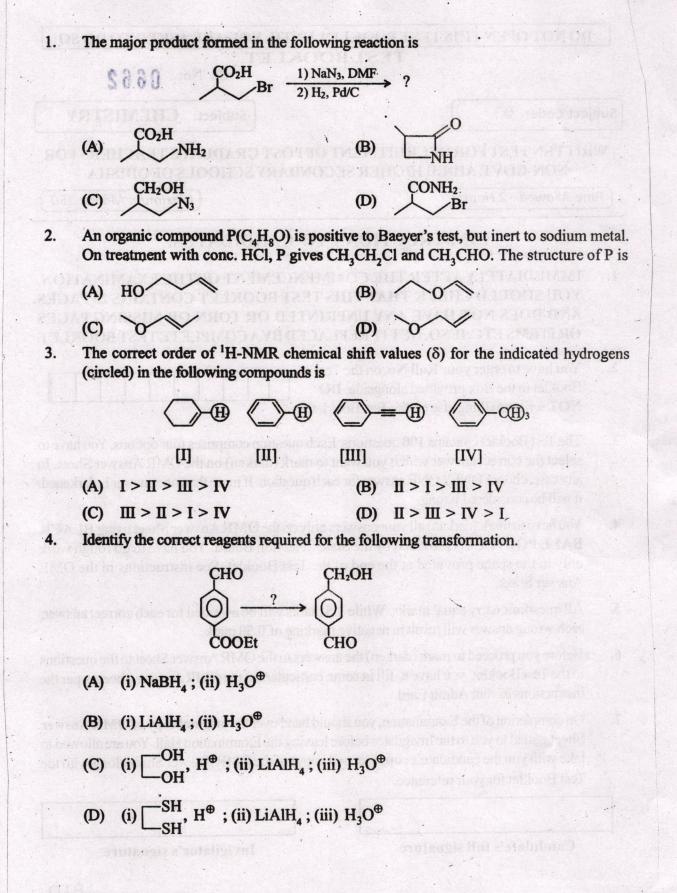
Subject: CHEMISTRY

WRITTEN TEST FOR RECRUITMENT OF POST GRADUATE TEACHERS FOR NON-GOVT. AIDED HIGHER SECONDARY SCHOOLS OF ODISHA

Time Allowed : 2 Hours

Maximum Marks: 150

: INSTRUCTIONS TO CANDIDATES:


- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET CONTAINS 20 PAGES AND DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. You have to enter your **Roll No.** on the Test Booklet in the Box provided alongside. **DO NOT** write anything else on the Test Booklet.

25.75 2.8.8.8	1-1-252	11.24.00	のないのあ	2.43.5.87	ALL LES	1.11.1	11	
			25.35				1.2.100	1.5
and the second			1.1.1.1.1		1. 1.	1.1.1.1		

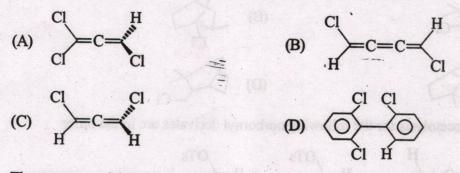
- 3. The Test Booklet contains 100 questions. Each question comprises four options. You have to select the correct answer which you want to mark (darken) on the OMR Answer Sheet. In any case, choose ONLY ONE answer for each question. If more than one answer is darkened, it will be considered wrong.
- 4. You have to mark (darken) all your answers only on the OMR Answer Sheet using BLACK BALL POINT PEN provided by the State Selection Board. You have to do rough work only in the space provided at the end of the Test Booklet. See instructions in the OMR Answer Sheet.
- 5. All questions carry equal marks. While 1.5 marks will be awarded for each correct answer, each wrong answer will result in negative marking of 0.50 mark.
- 6. Before you proceed to mark (darken) the answers in the OMR Answer Sheet to the questions in the Test Booklet, you have to fill in some particulars in the OMR Answer Sheet as per the instructions in your Admit Card.
- 7. On completion of the Examination, you should hand over the **original copy of OMR Answer Sheet** issued to you to the Invigilator before leaving the Examination Hall. You are allowed to take with you the candidate's copy (second copy) of the OMR Answer Sheet along with the Test Booklet for your reference.

Candidate's full signature

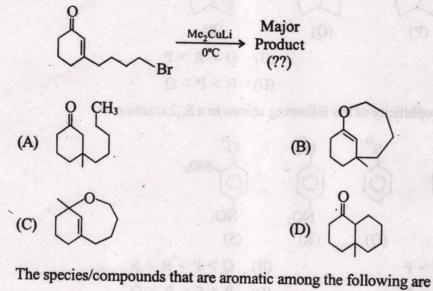
Invigilator's signature

Chemistry (Code : 03)

2


5.

Tollen's reagent will be negative for


(A) Glucose

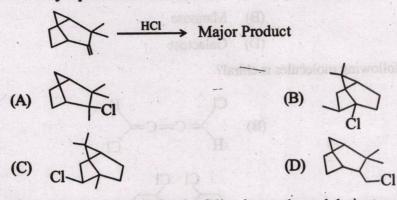
- (B) Mannose
- (C) Sucrose (I
 - (D) Galactose

6. Which one among the following molecules is chiral?

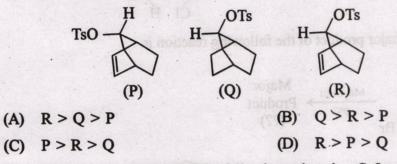
7. The structure of the major product of the following reaction is

8.

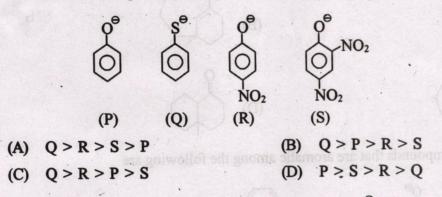
 $\begin{array}{cccc}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$

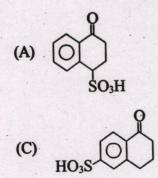

- (A) R and S
- (C) Q and S

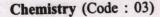
(B) P and Q(D) P and S

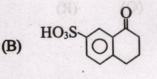

Chemistry (Code : 03)

3

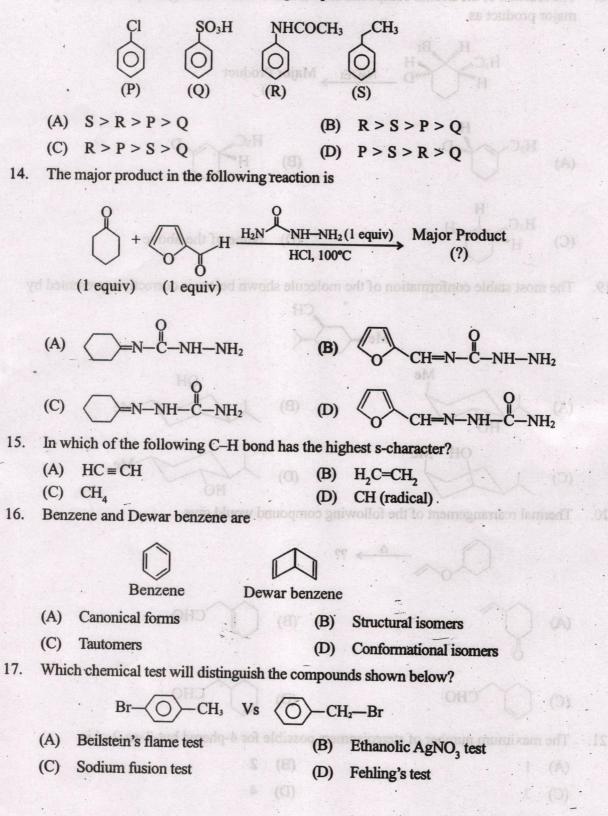

9. The major product obtained in the reaction given below is


10. The rates of acetolysis for the following norbornyl derivates are in the order



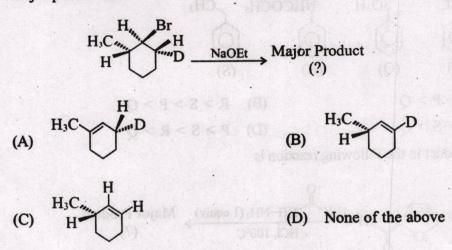

11. The order of nucleophilicity of the following anions in a S_N^2 reaction is

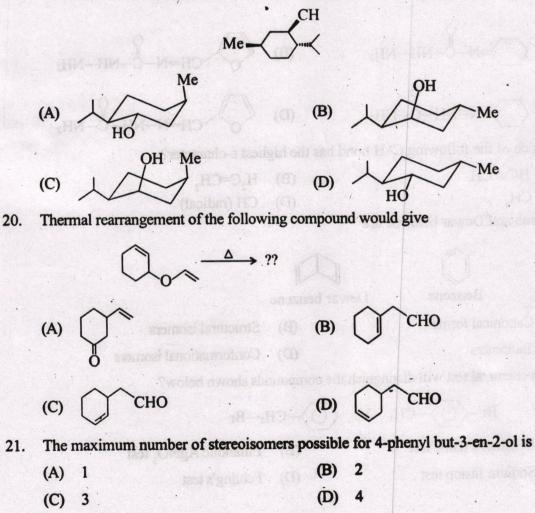
12. The major mono-sulfonation product of α -tetralone (O)) is



HO

(D)

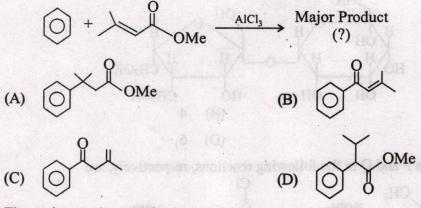

13. Electrophilic nitrations of the following compounds follow the trend


Chemistry (Code : 03)

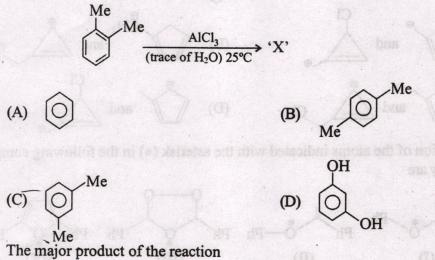
5

18. The reaction of the Bromo compound shown below with NaOEt gives predominantly the major product as

19. The most stable conformation of the molecule shown below is correctly represented by



Chemistry (Code : 03)

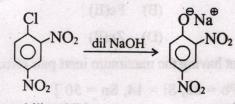

.

6

22. The major product of the reaction

The major product (X) in the reaction 23.

24.


 $C_6H_6 + CO + HC1 \xrightarrow{AlCl_3/CuCl} Major Product$ (?)

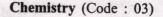
gives negative test with Fehling's solution. The major product is

- (A) C_6H_5-OH (B) C₆H₄(Cl)CHO
- (C) $C_6H_4(OH)CHO$ C6H5-CHO (D)

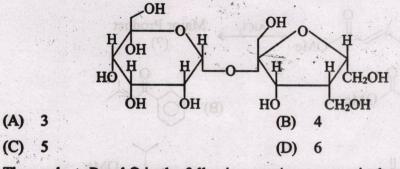
25.

The following transformation proceeds through

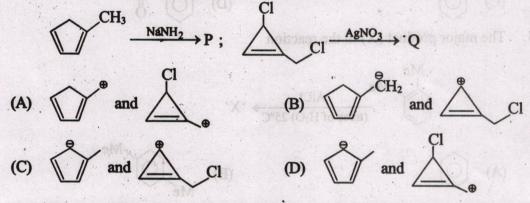
(A) electrophilic addition

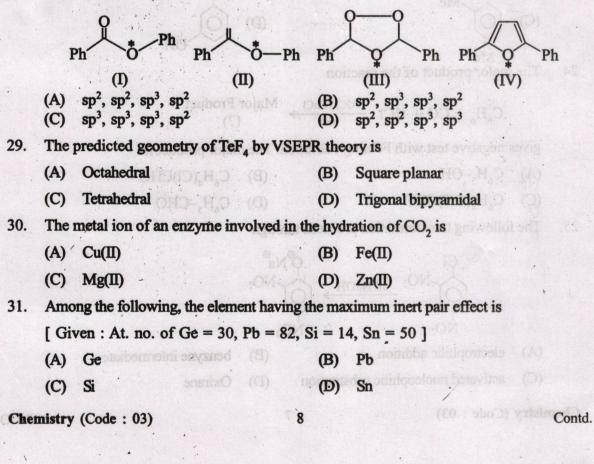

(B) benzyne intermediate

Oxirane


(D)

7


(C) activated nucleophilic substitution


26. How many moles of HIO₄ will be completely consumed by the following sugar?

27. The products P and Q in the following reactions, respectively, are

28. Hybridisation of the atoms indicated with the asterisk (*) in the following compounds sequentially are

32.	The no. of α and β particle(s) generated in the following radioactive decay process are								
		$^{238}_{92}U \longrightarrow ^{234}_{92}U$		· (A) And					
	(A)	One α and two β particles	(B)	Two α and one β particles					
	(C)	One α and four β particles	(D)	No α and four β particles					
33.	The	most polar compound among the fo	llowing	is					
	(A)	SF4	(B)	BF ₃					
	(C)	XeF ₄	(D)	SO3					
34.	Which one of the following order of the carbonates is correct for their decomposition?								
	(A)	$BaCO_3 > CaCO_3 > SrCO_3 > M$	gCO ₃						
	(B)	$BaCO_3 > SrCO_3 > CaCO_3 > M_3$	gCO ₃						
	(C)	$MgCO_3 > CaCO_3 > SrCO_3 > B$	aCO ₃						
	(D)	$MgCO_3 > CaCO_3 > BaCO_3 > S$	rCO,	43. The pH of an aqueous solution					
35.	35. Among the following, the ligand that best stabi	t stabilis	es low oxidation state of tungsten (W) is						
	(A)	H ₂ O	(B)	NH ₃					
	(C)	CO	(D)	F ^e					
36.	Whi	ch one of the following statements i	s correct	?					
l ana s	(A)	Naturally occurring DNA has β -co	nfigurati	on					
	(B)	Nucleic acids are derived from pro-	oteins						
	(C)	Proteins store genetic information							
	(D)	Vitamins generally act as enzymes	hinas au	ADD THE DECK UNIT OF CALLED OV					
37.	Mole	ecular shape of SOCl ₂ is	•						
	(A)	Square planar	(B)	Trigonal bipyramial					
	(C)	Trigonal planar	(D)	T-shaped					
38.	Num	ber of 3C-2e bonds presentation in	n diborar	ne is					
	(A)	2 L(MO)DOISTA (2)	(B)	(A) FelCHCHILL 4					
	(C)	(D) Fe(C)(CN),] 6	(D)	(C) KCdFe(CN), 8					
39.	that	attice energy of LiF calculated from for both LiF and MgO the Madel nents have the same value. The latt	ung con	nde equation is -1000 kJmol ⁻¹ . Assume stants, inter ionic distances and Born gy of MgO in KJmol ⁻¹ is					
	(A)	-4000 TOUM (C)	(B)	-2000					
	(C)	2000	(D)	4000					

Chemistry (Code : 03)

9

40. The compound found by dissolving elemental gold in aqua regia is

(A) AuCl

(C) H[AuCl₄]

- (B) AuNO₃
- (D) $H[Au(NO_3)_4]$
- 41. The correct order of acidic character is
 - (A) $Al_2O_3 > MgO > SiO_2 > P_4O_{10}$
 - (B) $P_4O_{10} > Al_2O_3 > MgO > SiO_2$
 - (C) $P_4O_{10} > SiO_2 > Al_2O_3 > MgO$
 - (D) $SiO_2 > P_4O_{10} > Al_2O_3 > MgO$
- 42. The pair of amphoteric oxides is
 - (A) VO, Cr_2O_3 (B) V_2O_3 , Cr_2O_3
 - (C) VO_2 , Cr_2O_3 (D) V_2O_5 , CrO_3
- 43. The pH of an aqueous solution of Al^{3+} is likely to be
 - (A) Neutral (B) Acidic
 - (C) Slightly basic (D) Highly basic

44. Hydrolysis of Me, SiCl, and MeSiCl, leads to

(A) linear chain and cross-linked silicones respectively

(B) cross-linked and linear chain silicones respectively

(C) linear chain silicones only

(D) cross-linked silicones only

45. The metal that is extracted by the reduction method is

- (A) Al (B) Au
- (C) Hg (D)

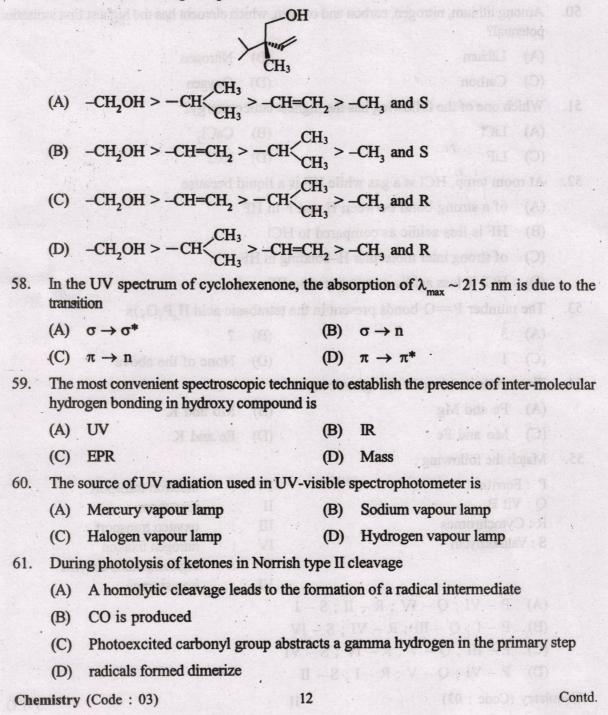
46. Addition of an aqueous solution of Fe (II) to potassium hexacyano chromate (III) produces a brick-red coloured complex, which turns dark green at 100°C. The dark green complex is

- (A) $\operatorname{Fe}_{4}[\operatorname{Cr}(\operatorname{CN})_{6}]_{3}$ (B) $\operatorname{KFe}[\operatorname{Cr}(\operatorname{CN})_{6}]$
- (C) $KCr[Fe(CN)_6]$ (D) $Fe[Cr(CN)_6]$

47. The colour of K, Cr, O, is due to

- (A) d-d transition
- (C) ·· LMCT

- (B) transition in K^{\oplus} ion
- (D) MLCT


Mg

Chemistry (Code : 03)

48.	Whie field?		vill sho	w John-Teller distortion in an octahedral
	(A)	High spin d ⁸	(B)	High spin d ⁴
	(C)	High spin d ⁵	(D)	High spin d ⁶
49.	Whi	ch of the following has a square plana	ar geon	metry according to VSEPR theory?
	(A)	XeO ₂ F ₂	(B)	SF4
	(C)	BF ₄ ⁻	(D)	XeF
50.	Amo		n, whi	ch element has the highest first ionisation
	(A)	Lithium	(B)	Nitrogen
	(C)	Carbon	(D)	Oxygen
51.	Whie	ch one of the following has the highes	t lattic	e energy?
	(A)	LiCl	(B)	CaCl,
	(C)	LiF a long HO-	(D)	KCl
52.	At ro	oom temp, HCl is a gas while HF is a	liqui	d because
	(A)	of a strong bond between H and F	19	
	(B)	HF is less acidic as compared to H		-HT
	(C)	of strong inter molecular H-bonding		(B) CHOR > -CB
to and a	(D)			
53.		number P=O bonds present in the t		
	(A)		(B)	2
•	(C)	1 · · *π ← π (60)	(D)	None of the above
54.	• •	netals involved in nitrogenase are	(12)	
0 11	(A)	Fe and Mg	(B)	Mo and K
	(C)	Mo and Fe (8)		Fe and K
55.		h the following :	(D)	
55.		erritin	Tribe	
		/it B ₁₂	П	: electron transport : ionophore
		vtochromes	Ш	: oxygen transport
	S:Va	alinomycin	IV	: nitrogen fixation
		ish type II oleavage	-	: organometallic enzyme
			VI	: iron storage
		P - VI; Q - IV; R - II; S - I P - I; Q - III; R - VI; S - IV		(B) CO is preduced
gois		P - III; Q - III; R - VI; S - IV P - III; Q - V; R - IV; S - VI		a Properties borrested carlicos a
				Or reducies (control distribution
	(D)	P - VI; Q - V; R - I; S - II		

56. Conversion of Cyclohexene to Cyclohexanol can be achieved by

- (A) NaOH H₂O
- (B) Br, H,O
- (C) Hydroboration followed by oxidation
- (D) Hydroboration followed by hydrolysis
- 57. The Cahn-Ingold-Prelog (CIP) priorities of the groups and the absolute configuration (R/S) of the following compound are

62. Among the following the correct statement is

- (A) absorption of radiation shifts to longer wave length region with increase in conjugation
- (B) absorption of radiation shifts to higher energy region with increase in conjugation
- (C) intensity of $n \rightarrow \pi^*$ transition decreases upon conjugation
- (D) intensity of $\sigma \rightarrow \sigma^*$ transition decreases upon conjugation
- 63. The transmittance of an alcoholic solution of a certain compound at 500 nm is 1 per cent in a 1cm cell. The absorbance is
 - (A) 1.0 (B) 2.0
 - (C) 2.5 (D) 4.0
 - Match the compounds P-S with their carbonyl stretching frequencies (cm⁻¹) I-VI in IR spectroscopy :

P: Acetone	luche, the resonar	0130	1870
Q: Ethyl acetate	II (B)	:	1800
R:Acetamide	III	:	1740
S : Acetyl Chloride	IV		1700
	v	:	1660
	VI	:	1600

- (A) P IV; Q III; R I; S VI
- (B) P III; Q VI; R V; S II
- (C) P IV; Q III; R V; S II
- (D) P II; Q V; R III; S VI
- 65. Which one of the following IR frequencies is the closest to that of a triply bridged CO group?

innim (A).

P.T.O.

- (A) 1700 cm^{-1} (B) 1810 cm^{-1}
- (C) 1920 cm^{-1} (D) 2140 cm^{-1}
- 66. The C–O bond in an organic compound absorbs electromagnetic radiation of frequency 6×10^{13} Hz. The frequency corresponds to the region

(A)	Infrared	(B)	Microwave
(C)	Ultraviolet	ற	Visible

(D) Visible

Chemistry (Code : 03)

64.

is bata

67. The vicinal coupling constant (J) expected for the protons H_p and H_Q in the compound given below will be in the range

	8	search film notion figure was	its to induce w	
	iliana)	mergy region with increase in	Ho	
		a upon commeation		
		a upon conjugation	H _P	
	(A)	0-2 Hz	(B)	4-6 Hz
	(C)	8-10 Hz	(D)	12-15 Hz
58.	The	number of signals observed in	h 'H NMR spe	ctrum of 3,5-dibromotoluene is
	(A)	3	(B)	4
	(C)	2	(D)	6
59.	In th	e ¹ H NMR spectrum of tolue	ene, the resona	ance due to CH ₃ group is expected at
	(A)	δ 0.5	(B)	δ 2.5
	(C)	δ 1.25	(D)	δ 3.5
70.	The is	number of peaks in ¹ H NMR	signals of N,N	N-Dimethyl formamide (DMF) at 25°C
	(A)	3	(B)	1 .
	(C)	2	(D)	4 9 . UT - 0 . VI - 4 (A)
71.	Ina	polarogram, the wave height	is a measure o	of Antive Column (d)
	. (A)	migration current	(B)	diffusion current
	(C)	residual current	(D)	decomposition potential
72.	The	diffusion current in a polarog	ram is proporti	onal to
	(A)	the residual current		
	(B)	the migration current		transfer An
	(C)	the wave height		
	(D)	the concentration of the supp	porting electro	lyte
73.	The	function of the reference elect	trode in coulor	netric analysis is to
	(A)	control the potential of the c	athode	eshiriniti (c)
	(B)	control the potential of the a	anode	
	(C)	enable the measurement of	the potential of	f the auxiliary electrode
	(D)	enable the measurement of	the potential o	f the working electrode

14

		perstere.		
	(A)	$(m)^{\frac{1}{3}}(t)^{\frac{1}{6}}$		$(m)^{\overline{3}}(t)^{\overline{3}}$
	(C)	$(m)^{\frac{2}{3}}(t)^{\frac{1}{6}}$	(D)	$(m)^{\frac{3}{2}}(t)^{\frac{1}{6}}$
75.		ch of the following particles is a Fem		 (A) Boyle's competature.
	(A)	α-particle	(B)	β-particle
	(C)	γ-particle	(D)	$^{12}C_6$
76.	meas 0.05	sured independently for three differen	nt initial tion wa	$_{2}$ + O_{2} in liquid Bromine medium was concentrations of $N_{2}O_{5}$: 0.11, 0.07 and as found to be 4.5 hours for all these
	(A)	0	(B)	1 Parts
	(C)	2	(D)	0.5
77.		ording to the equipartition principle me for $CO_2(g)$, $SO_2(g)$ and $H_2O(g)$		gy the molar heat capacity at constant he trend
	(A)	CO ₂ =SO ₂ =H ₂ O	(B)	CO ₂ >SO ₂ =H ₂ O
	(C)	H ₂ O>SO ₂ =CO ₂	(D)	CO ₂ =SO ₂ >H ₂ O
78.	The	ionic strength of 0.1M aqueous solu	tion of I	$Fe_2(SO_4)_3$ is
	(A)	0.1M	(B)	0.65M
	(C)	1.3M	(D)	1.5M
79.		change in entropy for the following translicates decrease and 0 indicates no c		tions is respectively (+ indicates increase,
	(i)	$SO_2Cl_2(g) \xrightarrow{\Delta} SO_2(g) + Cl_2(g)$	нырн аз	O.11 (A)
	(ii)	n $CH_2 = CH_2(g) \xrightarrow{Catalyst} [CH_2 -$	CH,(s)]	
	(iii)	$I_2(s) \xrightarrow{\Delta} I_2(v)$		n 110-1 (3) HO-1 (3)
	(iv)	Adiabatic reversible expansion of a	n ideal	gas to dullet monoto community of the de
	(A)	+, -, 0, +	(B)	+, -, 0, 0
	(C)	-, +, +, 0	(D)	gas +, -, 0, 0 +, -, +, 0

Chemistry (Code : 03)

15

P.T.O.

80. For physisorption process, which one of the following statements is NOT correct?

(A) There are van der Waals' interactions between the adsorbate and adsorbent.

(B) The process predominates at low temperature.

(C) The process cannot proceed beyond a mono layer.

(D) The process is reversible.

81. The enthalpy of vaporisation (ΔH_{vap}) is zero at

- (A) Boyle's temperature (B) Ciritical temperature
- (C) Inversion temperature (D) Boiling temperature
- 82. The average speed of H_2 , N_2 and O_2 gas molecules is in the order
 - (A) $H_2 > N_2 > O_2$ (B) $O_2 > N_2 > H_2$ (C) $H_2 > O_2 > N_2$ (D) $N_2 > O_2 > H_2$

83. For the equilibrium $N_2 + 3H_2 \implies 2NH_3$, the equilibrium constant K_p is expressed as

(A) $3^{3}K_{p} = \frac{p_{NH_{3}}}{p_{N_{2}}^{2}}$ (B) $3^{3}K_{p} = \frac{p_{NH_{3}}^{2}}{p_{N_{2}}p_{H_{2}}^{3}}$

(C)
$$3^{3}K_{p} = \frac{p_{NH_{3}}^{2}}{p_{N_{2}}^{4}}$$
 (D) $3^{3/2}K_{p}^{1/2} = \frac{p_{NH_{3}}^{2}}{p_{N_{2}}^{4}}$

- 84. The half-life of a zero-order reaction is
 - (A) independent of concentration
 - (B) proportional to the inverse of concentration
 - (C) proportional to concentration

(D) proportional to the square of concentration

- 85. Among the following the most viscous liquid is
 - (A) H_2O (B) CH_3OH
 - (C) \Box_{OH}^{OH} (D) $HO \longrightarrow_{OH}^{OH}$ OH
- 86. The minimum concentration of Ag^{\oplus} ions that is required to start the precipitation of Ag_2S ($K_{sp} = 1 \times 10^{-51}$) in a 0.1M solution of S²⁻ ion is

(A) 1×10^{-49} M	04-4	(B)	1×10 ⁻⁵⁰ M
(C) 1×10 ⁻²⁶ M	an star	(D)	1×10 ⁻²⁵ M

Chemistry (Code : 03)

16

Contd.

NET (2)

	•	•			
87.		hydrolysis constant (K_h) of ion of NH_4Cl at equilibriu		5.6×10	⁻¹⁰ . The concentration of H_3O^+ in a 0.1M
	(A)	$\sqrt{5.6 \times 10^{-11}}$		(B)	$\sqrt{5.6 \times 10^{-10}}$
	(C)	5.6×10 ⁻¹⁰		(D)	2.8×10 ⁻⁵
88.	Ifψi be	s the eigen function to the	Hamiltonia	n opera	tor with α as the eigen value then α must
	(A)	Positive		(B)	Negative
	(C)	An integer		(D)	Real
89.	A qu	antum mechanical partici	le of mass'	m' free	e to rotate on the surface of a sphere of
	radiu	s r is in the state with en	$rgy \frac{10\hbar^2}{2}$. The d	legeneracy of the state is
					and the second second second
	(A)	20 er strooloer sced		(B)	10
	(C)	9	6(U (2))	• • •	4
90.		work done during the free ginal volume is	e expansior	n of on	e mole of an ideal gas at 27°C to twice
	[Give	$en : RT = 2494 \text{ J mol}^{-1};$	$\ln 2 = 0.7$; log2	= 0.3]
	(A)	1746 J mol ⁻¹		(B)	-1746 J mol ⁻¹
	(C)	zero		(D)	7482 J mol ⁻¹
91.	Whic	h of the following is a fun	damental p	article	entil auton is respectively
	(A)	Proton		(B)	Electron
	(C)	Neutron	(1) 8.4	(D)	All (C)- 4. 6
92.					nole of H_2 and the other with 1 mole of same, then the ratio of the temperatures
	T _(H2)	$T_{(He)}$ is			(A) 2
	(A)	$\frac{1}{2}$	3/ (0)	(B)	2
	(C)	$\frac{1}{\sqrt{2}}$		(D)	$\sqrt{2}$
93.	An el orbita	ectron is found in an orbi	tal with on	e radic	al node and two angular nodes. Which
	(A)	1s		(B)	2p
-	(C)	3d		(D)	4d
Cher	nistry	(Code : 03)	17	81	(E0 abo) P.T.O.

	(A)	8.0			(B)	7.1	ion of MH ₂ Cl warman	
	(C)	6.9				6.0		
95.	² P.	is the grou						
-	- 3 2					inter Hartin		
	(A)	Н			(B)	Li		
	(C)	В		anageM (6	(D)	F ·		· (A)
96.	The	number of	epr signals	expected in	CH ₃ (me	thyl radica	l) is	
	(A)	1		erioi ei cal	(B)	2	I reprintigent offentio	
	(C)	3					in state and dicat real	
97.	The	point group	o symmetry	of the stagg	ered form	of ethane	molecule is	
		C _{3V}		\$ K	· · · · · ·	D _{3d}		
	(C)	D _{3h}	a (activities)	one mole.o				
98.	The lowest energy term symbol for the Si atom is							
	(A).	³ P	1.	18.0 = 53	(B)	³ S	a Lives expansion	
	(C)	³ D		3) ·-1746	(D)	³ R		(A):
99.		ium fluorid anion is res		s in fluorite	structure.	The coord	nation number for th	e cation
	(A)	6, 6			(B)	6, 4		
	(C)	4, 6		100 (0		8, 4	Personale	i
00.	The	orbital ang	ular momen	tum (in the	units of h	$\frac{1}{2\pi}$) of an	electron in the 3d or	bital is
	(A)				(B)		· A moth	
	(C)	$\sqrt{2}$			(D)	$\sqrt{6}$		
					J .		a	

SPACE FOR ROUGH WORK

Chemistry (Code : 03)

SPACE FOR ROUGH WORK

Chemistry (Code : 03)

3 -Clienistry (Cole : (3))