TEST BOOKLET
LECTURERS IN NON-GOVERNMENT AIDED COLLEGES CHEMISTRY

: INSTRUCTIONS TO CANDIDATES :

1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET OF THE SAME SERIES ISSUED TO YOU.
2. You have to enter your Roll No. on the Test Booklet in the Box provided alongside. DO NOT write anything else on the Test Booklet.

3. This Test Booklet contains 100 items (questions). Each item (question) comprises four responses (answers). You have to select the correct response (answer) which you want to mark (darken) on the Answer Sheet. In case, you feel that there is more than one correct response (answer), you should mark (darken) the response (answer) which you consider the best. In any case, choose ONLY ONE response (answer) for each item (question). If more than one response is darkened it will be considered as wrong answer.
4. You have to mark (darken) all your responses (answers) ONLY on the separate Answer Sheet provided, by using BALL POINT PEN (BLACK). See instructions in the Answer Sheet.
5. All items (questions) carry equal marks. All items (questions) are compulsory. Each wrong response will result in negative marking of 0.25 mark.
6. Before you proceed to mark (darken) in the Answer Sheet the responses to various items (questions) in the Test Booklet, you have to fill in some particulars in the Answer Sheet as per the instructions in your Admission Certificate.
7. After you have completed filling in all your responses (answers) on the Answer Sheet and after conclusion of the examination, you should hand over to the Invigilator the Answer Sheet issued to you. You are allowed to take with you the candidate's copy/second page of the Answer Sheet along with the Test Booklet after completion of the examination for your reference.

Candidate's full signature
CO -4/15

Invigilator's signature
(Turn over)

1. Example of intensive property of a system is :
(A) Energy
(B) Volume
(C) Mass
(D) Viscosity
2. Example of extensive property of a system is :
(A) Pressure
(B) Density
(C) Mass
(D) Viscosity
3. Value of $\mathrm{w}\left(\mathrm{J} \mathrm{mol}^{-1}\right)$ for the conversion of 1 mole of water at $100^{\circ} \mathrm{C}$ to steam at 1 atm pressure (Heat of vapourization of water at $100^{\circ} \mathrm{C}$ is $40670 \mathrm{~J} \mathrm{~mol}^{-1}$) is :
(A) 310
(B) 31
(C) 3100
(D) 0.31
4. Assuming hydrogen (g) as a van der Waals gas, its fugacity at $100^{\circ} \mathrm{C}$ and 300 atm with $\mathrm{a}=0.244 \mathrm{dm}^{6} \mathrm{~atm}$
$\mathrm{mol}^{-2}, \mathrm{~b}=0.0266 \mathrm{dm}^{-3} \mathrm{~mol}^{-1}$ and $V m=0.119 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ will be :
(A) 386.6 atm
(B) 176.76 atm
(C) 672.1 atm
(D) 100 atm
5. Zero point entropy of CO crystal at OK will be :
(A) $4.12 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(B) $5.76 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(C) $3.152 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(D) $7.56 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
6. A zincrod is placed in 0.1 M solution of zinc sulphate at $25^{\circ} \mathrm{C}$. Assuming that the salt is dissociated to the extent of 95% at this dilution, the potential of the electrode at this temperature will be (given $\left.\mathrm{E}_{\mathrm{Zn} 2+, \mathrm{Zn}}^{\circ}=-0.76 \mathrm{~V}\right):$
(A) 0.72 V
(B) -0.87 V
(C) -0.79 V
(D) -0.97 V

Contd.
7. Limitation of quinhydrone electrode is that:
(A) It cannot be used in acidic medium
(B) It cannot be used for solutions of pH less than 7
(C) It cannot be used for solutions of pH more than 8
(D) It cannot be used for solutions of pH 7.0
8. If water vapour is assumed to be a perfect gas, molar enthalpy change for vaporization of 1 mol of water at 1 bar and $100^{\circ} \mathrm{C}$ is $1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The internal energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ when 1 mol of water is vaporized at 1 bar and $100^{\circ} \mathrm{C}$ will be :
(A) 36.9
(B) -36.9
(C) 37.9
(D) 39.7
9. Which of the salts will give highest pH in water?
(A) KCl
(D) 238 mV

CO $-4 / 15$
(B) NaCl
(C) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(D) CuSO_{4}
10. Activity of 2.5 mol of a substance changes from 0.05 to 0.35 .What would be the change in free energy at $27^{\circ} \mathrm{C}$?
(A) 128321.8 J
(B) 1318.36 J
(C) 1213.360 J
(D) 12133.6 J
11. The transfer coefficient of a certain electrode in contact with M^{3+} and M^{4+} in aqueous solvents at $25^{\circ} \mathrm{C}$ is 0.39 . The current density is found to be $55.0 \mathrm{~mA} \mathrm{~cm}^{-2}$ when the overvoltage is 125 mV . What is the overvoltage required for a current density of $75.0 \mathrm{~mA} \mathrm{~cm}^{-2}$?
(A) 118 mV
(B) 138 mV
(C) 218 mV
12. What will be the effect of temperature on rates of exothermic and endothermic reaction?
(A) In case of endothermic reaction, the rate will increase and that in case of exothermic reactions, the rate will decrease
(B) In case of endothermic reaction, the rate will decrease and that in case of exothermic reactions, the rate will increase
(C) In both the cases, the rate will be unaffected by temperature
(D) The rate of the reactions will increase in both the case
13. The reaction: $A+B \leftrightarrow C$ is order two in forward direction and is order 1 in backward direction. What will be overall order or the reaction?
(A) 1
(B) 2
(C) 1.75
(D) Insufficient data to determine the order
14. $T_{1 / 2}$ of a reaction is doubled as the initial concentration of the reactant is doubled. What is the order of the reaction?
(A) 1
(B) 2
(C) Zero
(D) 3
15. Which energy level of the triply ionized berylium ($\mathrm{Be} 3+$) has the same orbital radius as that of the ground state of hydrogen atom?
(A) Ground state
(B) First
(C) Two
(D) None of these
16. A ball of 1 g , confined to a one dimensional box of length 0.1 m moves with a velocity of $0.01 \mathrm{~ms}^{-1}$. Calculate the quantum number n :
(A) 3×10^{27}
(B) 2
(C) 8×10^{21}
(D) 5
17. Assuming that the ionic character in HBr bond is 11%, what will be the fraction of the contribution of ionic character to the valence bond wave function?
(A) 0.25
(B) 0.43
(C) 0.75
(D) 0.35
18. Find ΔH if 2000 mol of super cooled liquid water at $-15.00^{\circ} \mathrm{C}$ freezes irreversibly at a constant pressure of 1.000 atm and a temperature of $-15.00^{\circ} \mathrm{C}$. Assuming that $C_{P, m}$ of liquid water is constant and equal to $75.48 \mathrm{jK}^{-1} \mathrm{~mol}^{-1}$ and that $\mathrm{C}_{\mathrm{P}, \mathrm{m}}$ of ice is constant and equal to $37.15 \mathrm{jK}^{-1} \mathrm{~mol}^{-1}$:
(A) -19.27 kJ
(B) -10.87 kJ
(C) -15.87 kJ
(D) -12.87 kJ
19. 'It is not possible to determine rate determining step if relative rates of various steps of a complex chemical reaction are not known.' The statement is :
(A) Correct
(B) Partially correct
(C) Wrong
(D) Required more information to derive conclusion

CO-4/15
20. The reaction: $\mathrm{SO}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$ is a first order gas reaction with $k_{1}=2.2 \times 10^{-5} \mathrm{~s}-1$ at 573 K . What \% of thionly chloride is decomposed on heating at 573 K for 90 min ?
(A) 17.2
(B) 10.5
(C) 15.7
(D) 11.2
21. The nature of π-bond in perchlorate $\left(\mathrm{ClO}_{4}\right)$ ion is :
(A) $\mathrm{O}_{(\mathrm{d} \pi)}-\mathrm{Cl}_{(\mathrm{p} \pi)}$
(B) $\mathrm{O}_{(\mathrm{p} \mathrm{\pi})}-\mathrm{Cl}_{(\mathrm{p} \mathrm{\pi})}$
(C) $\mathrm{O}_{(\mathrm{p} \pi)}-\mathrm{Cl}_{(\mathrm{d} \pi)}$
(D) $\mathrm{O}_{(\mathrm{d} \pi)}-\mathrm{Cl}_{(\mathrm{d} \pi)}$
22. Which of the following is the correct order of the stability?
(A) $\mathrm{CN}<\mathrm{NO}^{+}<\mathrm{NO}^{-}$
(B) $\mathrm{NO}^{-}<\mathrm{CN}<\mathrm{NO}^{+}$
(C) $\mathrm{NO}^{+}<\mathrm{CN}<\mathrm{NO}^{-}$
(D) $\mathrm{CN}<\mathrm{NO}^{-}<\mathrm{NO}^{+}$
23. Which among the following is soft base?
$\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{H}^{+}, \mathrm{CN}^{-}, \mathrm{SCN}^{-}$
(A) $\mathrm{H}^{+}, \mathrm{CN}^{-}, \mathrm{SCN}^{-}$
(B) $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
(C) $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{H}^{+}$
(D) $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{SCN}^{-}$
24. Which among the following is soft acid, according to Pearson's concept of hard and soft acids ?
$\mathrm{Ag}^{+}, \mathrm{I}^{7+}, \mathrm{NO}^{+}, \mathrm{RO}^{+}, \mathrm{Hg}^{++}, \mathrm{Hg}_{2}^{++}$
(A) $\mathrm{Ag}^{+}, \mathrm{RO}^{+}, \mathrm{Hg}^{++}, \mathrm{Hg}_{2}^{++}$
(B) $\mathrm{Ag}^{+}, \mathrm{I}^{7+}, \mathrm{NO}^{+}, \mathrm{RO}^{+}$
(C) $\mathrm{NO}^{+}, \mathrm{RO}^{+}, \mathrm{Hg}^{++}, \mathrm{Hg}_{2}^{++}$
(D) $\mathrm{Ag}^{+}, \mathrm{I}^{7+}, \mathrm{NO}^{+}, \mathrm{RO}^{+}, \mathrm{Hg}^{++}$, Hg_{2}^{++}
25. Which of the following represent set of hard acid and soft base respectively?
(A) $\mathrm{Mg}^{++}, \mathrm{O}_{2}^{2-}$
(B) $\mathrm{Mg}^{++}, \mathrm{SR}^{-}$
(C) $\mathrm{BF}_{3}, \mathrm{~F}$
(D) $\mathrm{BF}_{3}, \mathrm{H}_{2} \mathrm{O}$
26. Which of the following statement is true?
(A) Hard acids are non-polarizable.
(B) Pyridine, $\mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{O}$ are Lewis base.
(C) According to HSAB principle, HA prefer SB for binding.
(D) Ag+ is hard acid.
27. In which of the following arrangements, the sequence is not strictly according to the property written against it?
(A) $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$: increasing acid strength
(B) $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$: increasing basic strength
(C) $\mathrm{B}<\mathrm{C}<\mathrm{O}<\mathrm{N}$: increasing first ionization enthalpy
(D) $\mathrm{CO}_{2}<\mathrm{SiO}_{2}<\mathrm{SnO}_{2}<\mathrm{PbO}_{2}$: increasing oxidising power
28. In which of the following arrangements the order is NOT according to the property indicated against it?
(A) $\mathrm{Al}_{3+}<\mathrm{Mg}_{2+}<\mathrm{Na}_{+}<\mathrm{F}-$ increasing ionic size
(B) B $<$ C $<$ N $<$ O $<$ P-increasing first ionisation enthalpy
(C) I $<\mathrm{Br}<\mathrm{F}<\mathrm{Cl}$ - increasing electron gain enthalpy (with negative sign)
(D) $\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}$-increasing metallic radius
29. Which one of the following substances has the highest proton affinity ?
(A) $\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{H}_{2} \mathrm{~S}$
(C) NH_{3}
(D) PH_{3}
30. The correct sequence which shows decreasing order of the ionic radii of the elements is :
(A) $\mathrm{Al}_{3+}>\mathrm{Mg}_{2+}+\mathrm{Na}_{+}>\mathrm{F}_{-}>\mathrm{O}_{2-}$
(B) $\mathrm{Na}_{+}>\mathrm{Mg}_{2+}>\mathrm{Al}_{3+}>\mathrm{O}_{2-}>\mathrm{F}_{-}$
(C) $\mathrm{Na}_{+}>\mathrm{F}_{-}>\mathrm{Mg}_{2+}>\mathrm{O}_{2-}>\mathrm{Al}_{3+}$
(D) $\mathrm{O}_{2-}>\mathrm{F}_{-}>\mathrm{Na}_{+}>\mathrm{Mg}_{2+}>\mathrm{Al}_{3+}$
31. Consider the ions $\mathrm{Eu}(\mathrm{III}), \mathrm{Gd}(\mathrm{III})$, Sm (III) and $\mathrm{Lu}(\mathrm{III})$. The observed and calculated magnetic moment values are closest for the pair :
(A) $\operatorname{Gd}(I I I), L u(I I I)$
(B) $\mathrm{Eu}($ III), $\mathrm{Lu}($ III $)$
(C) $\mathrm{Sm}($ III), $\mathrm{Gd}($ III)
(D) Sm (III), Eu(III)
32. Identify the order representing increasing π-acidity of the ligands $\mathrm{C}_{2} \mathrm{~F}_{4}, \mathrm{NEt}_{3}, \mathrm{CO}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$:
(A) $\mathrm{CO}<\mathrm{C}_{2} \mathrm{~F}_{4}<\mathrm{C}_{2} \mathrm{H}_{4}<\mathrm{NEt}_{3}$
(B) $\mathrm{C}_{2} \mathrm{~F}_{4}<\mathrm{C}_{2} \mathrm{H}_{4}<\mathrm{NEt}_{3}<\mathrm{CO}$
(C) $\mathrm{C}_{2} \mathrm{H}_{4}<\mathrm{NEt}_{3}<\mathrm{CO}<\mathrm{C}_{2} \mathrm{~F}_{4}$
(D) $\mathrm{NEt}_{3}<\mathrm{C}_{2} \mathrm{~F}_{4}<\mathrm{C}_{2} \mathrm{~F}_{4}<\mathrm{CO}$
33. Which of the following statement is false?
(A) Liquid ammonia has levelling effect on strength of HF and HCl
(B) Water has levelling effect on strength on HF and HCl

CO-4/15
36. The increasing order of wavelength of the absorption for the complex ions :
(I) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(II) $\left[\mathrm{CrCl}_{6}\right]^{3-}$
(III) $\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+}$
$(\mathrm{V})\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
(A) IV $<$ II $<$ I $<$ III
(B) IV $<$ I $<$ III $<$ II
(C) IV $>$ I $>$ III $>$ II
(D) IV $<$ III $<$ II $<$ I
37. Which of the following statement is false?
(A) Liquid ammonia has levelling effect on strenth of HF and HCl .
(B) Water has levelling effect on strength of HF and HCl .
(C) Acetic acid has a levelling effect on strength on $\mathrm{HF}, \mathrm{HCl}$, $\mathrm{HBr}, \mathrm{HI}$.
(D) Water is differentiating solvent for HF and HCl .
38. Identified the correct statement about $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$:
(A) All Ni-O and $\mathrm{Cu}-\mathrm{O}$ bond length are identical in individual species
(B) $\mathrm{Ni}-\mathrm{O}$ (equatorial) and $\mathrm{Cu}-\mathrm{O}$ (equatorial) bond length are shorter than $\mathrm{Ni}-\mathrm{O}($ axil) and $\mathrm{Cu}-\mathrm{O}$ (axil) respectively
(C) All Ni-O bond length are identical whereas CuO(equatorial) bond length are shorter than Cu-O(axil)
(D) Cu-O bond length are identical $\mathrm{Ni}-\mathrm{O}$ (equatorial) bond length are shorter than $\mathrm{Ni}-\mathrm{O}$ (axil)
39. Correct order of acidity among the following species :
(A) $\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}>\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>$ $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(B) $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>$ $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}$
(C) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>$ $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}$
(D) $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}>$ $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
40. The correct order of LMCT energies is :
(A) $\mathrm{MnO}_{4}^{-}>\mathrm{CrO}_{4}^{2-}>\mathrm{VO}_{4}^{3-}$
(B) $\mathrm{MnO}_{4}^{-}<\mathrm{CrO}_{4}^{2-}<\mathrm{VO}_{4}^{3-}$
(C) $\mathrm{MnO}_{4}^{-}>\mathrm{CrO}_{4}^{2-}<\mathrm{VO}_{4}^{3-}$
(D) $\mathrm{MnO}_{4}^{-}<\mathrm{CrO}_{4}^{2-}>\mathrm{VO}_{4}^{3-}$
41. What is the major product obtained from the following reaction?

(A)

(B)

(C)

(D)

42. What is the major product expected from the following reaction?

(A)

44. What is the major product of the following reaction?

(A) S-2-butanol
(B) R-2-butanol
(C) a racemic mixture of 2-butanol
(D) The hemiketal of 2-butanone and methanol....2-hydroxy-2methoxybutane
45. What is the major product obtained from the following reaction?

(A)

(B)

(C)

(D)

46. Which of the following compounds would react most readily by the $S_{N}{ }^{2}$ mechanism?
(A)

(B)

(C)

(D) None of these compounds will react by a $S_{N} 2$ mechanism

There are severe steric problems for the $S_{N}{ }^{2}$ mechanism for each of these componds.

Contd.
47. Which of the following nuclei will have a magnetic moment?
(A) ${ }_{1}^{2} \mathrm{D}$
(B) ${ }^{16}{ }_{8} \mathrm{O}$
(C) ${ }_{6}^{12} \mathrm{C}$
(D) ${ }_{16}^{32} \mathrm{~S}$

Nuclei that have an odd atomic number, odd atomic mass or both will have magnetic moments.
48. Which of the following compounds best fits the PMR spectrum shown below ? The table shows the chemical shift for groups attached to a bromine atom or a cyano group measured to the centre of the multiplet:

Group	CH_{3}	CH_{2}	CH
CN	1.98 ppm	2.45 ppm	2.9 ppm
Br	2.7 ppm	3.4 ppm	4.25 ppm

(A) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$

CO-4/15
(B) $\mathrm{CH}_{3}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{Br}$
(C) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{N}$
(D) $\mathrm{CH}_{3}-\underset{\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{C}}{\mathrm{CH}}-\mathrm{C} \equiv \mathrm{N}$
49. What is the multiplicity expected in the hydrogen NMR spectrum for the hydrogen atoms marked by a "star" in the following compound?

(A) Singlet
(B) Triplet
(C) Quartet
(D) Heptet
50. Which of the following alkyl groups would show the multiplet pattern depicted in the diagram?

(A) $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{X}$

(Turn over)
(B) $\mathrm{CH}_{3}-\underset{{ }_{\mathrm{C}}^{\mathrm{C}} \mathrm{C}_{3}}{\mathrm{CH}_{3}^{\mathrm{CH}}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{X}$
(C) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{X}$
(D) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{X}$
51. What is the major product of the following reaction?

(A)

(B)

(C)

(D)

52. What is the major product of the following reaction?
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow[\text { excess }]{\mathrm{HBr}}$
(A)

(B) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Br}$
(C)

(D)

53. Which reagent would provide the product shown?

(A)

(B) $\mathrm{H}_{3} \mathrm{O}^{+}$
(C) CrO_{3} pyridine, cold
(D) $\xrightarrow{\mathrm{O}_{3}} \xrightarrow[\mathrm{H}^{+}]{\mathrm{Zn}}$
54. Which of the following compounds is optically active?
(A)

(C)

(D)

55. What is the best name for the following compound?

(A) E-3-isopropy-2-hexene
(B) Z-3-(1-methylethyl)-2-hexene
(C) cis-3-isopropy-2-hexene
(D) trans-3-(1-methylethyl)-2-
hexene
56. Arrange the compounds in order of increasing reactivity toward electrophilic aromatic substitution (lowest first) :

।

II

III

IV
(A) III, II, I, IV
(B) $\mathrm{IV}, \mathrm{II}, \mathrm{I}, \mathrm{II} \mid$
(C) III, I, II, IV
(D) I, II, III, IV
57. What is the major product of the following reaction sequence?

(A)

(B)

(C)

(D)

58. What is the major product obtained from the following reaction?
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}^{\text {CH }}{ }_{\mathrm{CH}}^{3}$ $\xrightarrow[\text { one mole }]{\mathrm{HCl}}$
(A)

(B)

(C)

(D)

59. Which of the following set of reactions would provide the best synthesis of cis-1, 2dihydroxycyclohexane starting with cyclohexene?

(A) $\xrightarrow{\mathrm{HOBr}} \xrightarrow{\mathrm{NaOH}}$
(B)

(C) $\xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{OsO}_{4}}$
(D) $\xrightarrow{\mathrm{O}_{3}} \xrightarrow[\mathrm{HCl}]{\mathrm{Zn}}$
60. What is the major product obtained from the following reaction?

(A)

(B)

(C)

(D)

61. ${ }^{31} \mathrm{P}$ NMR for PF_{3} molecule $\left(\ell \mathrm{p}=\frac{1}{2}\right)$ gives:
(A) 3 peaks
(B) 4 peaks
(C) 6 peaks
(D) 9 peaks
62. Oxygen has nuclear spin of $5 / 2$. The NMR of oxygen gives :
(A) 2 lines
(B) 3 lines
(C) 4 lines
(D) 6 lines
63. The NMR spectrum of acetyl acetone was taken at $43^{\circ} \mathrm{C}$. The band observed at $\delta 5.52$ is due to olefinic hydrogen of enol form and band observed at $\delta 3.66$ is attributed to keto methylene group. If the areas under the two curves are in the ratio of 37 : 19.5, what will be the percentage of enol form in acetyl acetone?
(A) 20.9%
(B) 100%
(C) 79.1%
(D) 82.2\%
64. The stretching vibration frequencies of $\mathrm{C}=\mathrm{N}$ (alkyl cyanide) is in region of (in cm^{-1}) :
(A) 1400 to 1250

CO-4/15
(B) 2260 to 2240
(C) 2950 to 2650
(D) 3590 to 4420
65. In spectroscopy cm^{-1} is also known as:
(A) Lumen
(B) Candela
(C) Kayser
(D) Lux
66. In the infrared spectrum of ICl_{2}^{-}ion, the number of experimentally observed normal modes of vibrations is :
(A) 2
(B) 3
(C) 4
(D) 6
67. An IR spectrum of a hydrocarbon containing 10 percent hydrogen gave two bands (i) $3295 \mathrm{~cm}^{-1}$ and (ii) $625 \mathrm{~cm}^{-1}$ along with a weak absorption band near $2130 \mathrm{~cm}^{-1}$. What is the probable structure of the compound?
(A) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
(B) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$
(C) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
(D) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHO}$
(Turn over)
68. The deeper the glass, the darker the blend, the smaller the amount of light at the end, which law explains the above phrase?
(A) Nernstlaw
(B) Lambert's law
(C) Ilkovic law
(D) Beer's law
69. Aniline absorbs at $280 \mathrm{~nm}\left(\varepsilon_{\max } 8600\right)$, however in acidic solution the main absorption band is seen at :
(A) 280 nm
(B) 260 nm
(C) 225 nm
(D) 203 nm
70. According to the Woodward rules for the UV spectra of 1, 3-butadienes, each alkyl substituent causes the $\lambda_{\text {max }}$ to shift by :
(A) $+10 \mathrm{~m} \mu$
(B) $+5 \mathrm{~m} \mu$
(C) $-5 m \mu$
(D) $-10 m \mu$
71. The largest peak of a mass spectra is always the :
(A) Molecular ion (parent peak)
(B) First-fragmented ion peak
(C) Base peak
(D) McLafferty rearranged ion peak
72. The expected apparent mass of the metastable ion produced when m / z 77 decomposes by loss of $\mathrm{CH} \equiv \mathrm{CH}$ to $\mathrm{m} / \mathrm{z} 51$ will be :
(A) 43.4
(B) 33.8
(C) 66.8
(D) 51.0
73. The compound whose mass spectrum shows m/e values at 156 (M^{+}, base peak), 127 and 29 is :
(A) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$
(B) $\mathrm{CH}_{3} \mathrm{I}$
(C) $\mathrm{CH}_{3} \mathrm{Br}$
(D) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$
74. State which of the following statement is not true :
(A) Alcohols generally fail to give a visible molecular ion peak
(B) The loss of an alkene fragment by a cyclic rearrangement of a carbonyl compound with γ hydrogens is known as McLafferty rearrangement
(C) The molecular ion peak is generally the peak of highest mass number, except for the isotope peak
(D) Fragment ion peak is never a base peak or parent peak

Contd.
75. In gas chromatography, if two solutes with short retention time co-elute (i.e. are not resolved), what is the simplest way to attempt to resolve the peaks?
(A) Use a longer column
(B) Use a higher column temperature
(C) Use a lower column temperature
(D) Use a more polar solvent
76. An analyst loaded a mixture of two compounds, X and Y , onto C 18 column. After 20 min run, only 1 peak appeared in chromatogram. What are possible causes of this outcome?
(A) One of the compounds, X or Y , is markedly non-polar and has not been eluted yet
(B) Both compounds, X and Y , happen to elute at the same time
(C) One among them, X or Y , does not absorb at the wavelength λ used for detection
(D) All of the above
77. The following statement describes which type of GC detector :

The elute is burned in mixture of hydrogen and air and compounds that contain carbon and hydrogen produce CH radicals that react with O atoms to produce electrons. The electrons flow to the cathode and the current measured is proportional the amount of analyte :
(A) TCD
(B) FID
(C) MS
(D) ECD
78. The percentages of a constituent A in a compound $A B$ were found to be $48.32,48.36,48.23,48.11$ and 48.38 percent. What is the mean deviation in it?
(A) 0.09
(B) 1.9
(C) 0.9
(D) 9
79. In nephelometry, the scattered light is normally measured at an angle of:
(A) $45^{\circ} \mathrm{C}$
(B) $90^{\circ} \mathrm{C}$
(C) $135^{\circ} \mathrm{C}$
(D) $180^{\circ} \mathrm{C}$
80. Absorbed wavelengths in atomic absorption spectrum appear as :
(A) Dark background
(B) Dark lines
(C) Light background
(D) Light lines
81. Minamata disease associated with the following metal :
(A) Zn
(B) Cu
(C) As
(D) Hg
82. Winkler's method is used for determination of which water quality parameter:
(A) DO
(B) BOD
(C) COD
(D) TSS

CO-4/15
Contd.
87. At the Critical Micelle Concentration (CMC) the surfactant molecules :
(A) Decompose
(B) Dissociate
(C) Associate
(D) Become complete soluble
88. Which gas will be adsorbed on a solid to greater extent?
(A) A gas having non-polar molecules
(B) A gas having highest critical temperature
(C) A gas having lowest critical temperature
(D) A gas having highest critical pressure
89. The density of liquid methane is $0.466 * 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. The approximate cross-section area of a methane molecules is :
(A) $17.8 * 10^{-20} \mathrm{~m}^{2}$
(B) $14.8 * 10^{-20} \mathrm{~m}^{2}$
(C) $16.7 * 10^{-25} \mathrm{~m}^{2}$
(D) $10.2 * 10^{-20} \mathrm{~m}^{2}$

CO - 4/15
90. Adsorption of gases on solid surface is generally exothermic beacuse :
(A) Enthalpy is positive
(B) Entropy decrease
(C) Entropy increase
(D) Free energy increase
91. The lowering of the surface tension of a solvent by the surface film can be expressed in terms of surface film pressure which is :
(A) The negative of the surface tension
(B) The negative of the change in surface tension
(C) The negative of the change surface area of solvent
(D) None of these
92. Which of the following refer to the oxidation state of Iron and number of oxygen molecule carrier capacity of haemoglobin and myoglobin molecules :
(A) $\mathrm{Fe}^{+3}, 4,1$
(B) $\mathrm{Fe}^{+2}, 2,1$
(C) $\mathrm{Fe}^{+2}, 4,1$
(D) $\mathrm{Fe}^{+3}, 1,4$
93. Which is the function of Carbonic Anhydrase?

Conversion of CO_{2} into HCO_{3}^{-}
(B) Conversion of HCO_{3}^{-}into CO_{2}
(C) Deprotonation of water by lowering the pKa of water
(D) All of the above
94. How much ATP molecules are required in each N_{2} molecule fixation by molybdenum nitragenase?
(A) 14
(B) 12
(C) 16
(D) 18
95. In which step photolysis of water occurs during photosynthesis?
(A) Before photo system I
(B) During photo system II
(C) After photo system II
(D) During photo system II
96. In photochemical decomposition of ethylene iodide :
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{I}_{2}+\mathrm{I}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{I}_{2}$
By radiation of 424 nm , the iodine formed after 20 min required $41.14 \mathrm{~cm}^{3}$ of $0.0025 \mathrm{~mol} \mathrm{dm}^{-3}$
solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The intensity of the light source was $9.15 \times 10^{-4} \mathrm{Js}^{-1}$. Assuming complete absorption of energy, quantum yield of the reaction will be :
(A) 22.225
(B) 13.225
(C) 31.225
(D) 21.225
97. Chemical actinometer and thermopile are used to :
(A) Determine temperature of the photochemical reaction
(B) Determine the number of photons absorbed
(C) Determine the number of decomposed light absorbing molecules
(D) Determine the number of undecomposed molecules
98. The light of the firefly is an example of:
(A) Chemiluminiscence
(B) Phosphorescence
(C) Fluorescence
(D) Photosensitization

Contd.
99. At 460 nm , blue filter transmits 72.7% of the light and a yellow filter transmits 40.7% of the light. If the two filters are combined, what will be the \% transmittance?
(A) 26.9
(B) 29.6
(C) 69.2
(D) 56.7
100. Calculate the life time of an excited state if the natural width of the spectral line arising from the transition between this state and the ground state is $0.053 \mathrm{~cm}^{-1}$:
(A) 25 ps
(B) 50 ps
(C) 75 ps
(D) 100 ps

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

